1,332 research outputs found

    A retinotopic attentional trace after saccadic eye movements: evidence from event-related potentials

    Get PDF
    Saccadic eye movements are a major source of disruption to visual stability, yet we experience little of this disruption. We can keep track of the same object across multiple saccades. It is generally assumed that visual stability is due to the process of remapping, in which retinotopically organized maps are updated to compensate for the retinal shifts caused by eye movements. Recent behavioral and ERP evidence suggests that visual attention is also remapped, but that it may still leave a residual retinotopic trace immediately after a saccade. The current study was designed to further examine electrophysiological evidence for such a retinotopic trace by recording ERPs elicited by stimuli that were presented immediately after a saccade (80 msec SOA). Participants were required to maintain attention at a specific location (and to memorize this location) while making a saccadic eye movement. Immediately after the saccade, a visual stimulus was briefly presented at either the attended location (the same spatiotopic location), a location that matched the attended location retinotopically (the same retinotopic location), or one of two control locations. ERP data revealed an enhanced P1 amplitude for the stimulus presented at the retinotopically matched location, but a significant attenuation for probes presented at the original attended location. These results are consistent with the hypothesis that visuospatial attention lingers in retinotopic coordinates immediately following gaze shifts

    Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands

    Get PDF
    "© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)

    Trace manganese detection via differential pulse cathodic stripping voltammetry using disposable electrodes: Additively manufactured nanographite electrochemical sensing platforms

    Get PDF
    Additive manufacturing is a promising technology for the rapid and economical fabrication of portable electroanalytical devices. In this paper we seek to determine how our bespoke additive manufacturing feedstocks act as the basis of an electrochemical sensing platform towards the sensing of manganese(ii) via differential pulse cathodic stripping voltammetry (DPCSV), despite the electrode comprising only 25 wt% nanographite and 75 wt% plastic (polylactic acid). The Additive Manufactured electrodes (AM-electrodes) are also critically compared to graphite screen-printed macroelectrodes (SPEs) and both are explored in model and real tap-water samples. Using optimized DPCSV conditions at pH 6.0, the analytical outputs using the AM-electrodes are as follows: limit of detection, 1.6 × 10-9 mol L-1 (0.09 μg L-1); analytical sensitivity, 3.4 μA V μmol-1 L; linear range, 9.1 × 10-9 mol L-1 to 2.7 × 10-6 mol L-1 (R2 = 0.998); and RSD 4.9% (N = 10 for 1 μmol L-1). These results are compared to screen-printed macroelectrodes (SPEs) giving comparable results providing confidence that AM-electrodes can provide the basis for useful electrochemical sensing platforms. The proposed electroanalytical method (both AM-electrodes and SPEs) is shown to be successfully applied for the determination of manganese(ii) in tap water samples and in the analysis of a certified material (drinking water). The proposed method is feasible to be applied for in-loco analyses due to the portability of sensing; in addition, the use of AM-printed electrodes is attractive due to their low cost

    A competitive integration model of exogenous and endogenous eye movements

    Get PDF
    We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks. © The Author(s) 2010

    An fMRI Investigation of Preparatory Set in the Human Cerebral Cortex and Superior Colliculus for Pro- and Anti-Saccades

    Get PDF
    Previous studies have identified several cortical regions that show larger BOLD responses during preparation and execution of anti-saccades than pro-saccades. We confirmed this finding with a greater BOLD response for anti-saccades than pro-saccades during the preparation phase in the FEF, IPS and DLPFC and in the FEF and IPS in the execution phase. We then applied multi-voxel pattern analysis (MVPA) to establish whether different neural populations are involved in the two types of saccade. Pro-saccades and anti-saccades were reliably decoded during saccade execution in all three cortical regions (FEF, DLPFC and IPS) and in IPS during saccade preparation. This indicates neural specialization, for programming the desired response depending on the task rule, in these regions. In a further study tailored for imaging the superior colliculus in the midbrain a similar magnitude BOLD response was observed for pro-saccades and anti-saccades and the two saccade types could not be decoded with MVPA. This was the case both for activity related to the preparation phase and also for that elicited during the execution phase. We conclude that separate cortical neural populations are involved in the task-specific programming of a saccade while in contrast, the SC has a role in response preparation but may be less involved in high-level, task-specific aspects of the control of saccades

    Saccadic Eye Movement Abnormalities in Children with Epilepsy

    Get PDF
    Childhood onset epilepsy is associated with disrupted developmental integration of sensorimotor and cognitive functions that contribute to persistent neurobehavioural comorbidities. The role of epilepsy and its treatment on the development of functional integration of motor and cognitive domains is unclear. Oculomotor tasks can probe neurophysiological and neurocognitive mechanisms vulnerable to developmental disruptions by epilepsy-related factors. The study involved 26 patients and 48 typically developing children aged 8–18 years old who performed a prosaccade and an antisaccade task. Analyses compared medicated chronic epilepsy patients and unmedicated controlled epilepsy patients to healthy control children on saccade latency, accuracy and dynamics, errors and correction rate, and express saccades. Patients with medicated chronic epilepsy had impaired and more variable processing speed, reduced accuracy, increased peak velocity and a greater number of inhibitory errors, younger unmedicated patients also showed deficits in error monitoring. Deficits were related to reported behavioural problems in patients. Epilepsy factors were significant predictors of oculomotor functions. An earlier age at onset predicted reduced latency of prosaccades and increased express saccades, and the typical relationship between express saccades and inhibitory errors was absent in chronic patients, indicating a persistent reduction in tonic cortical inhibition and aberrant cortical connectivity. In contrast, onset in later childhood predicted altered antisaccade dynamics indicating disrupted neurotransmission in frontoparietal and oculomotor networks with greater demand on inhibitory control. The observed saccadic abnormalities are consistent with a dysmaturation of subcortical-cortical functional connectivity and aberrant neurotransmission. Eye movements could be used to monitor the impact of epilepsy on neurocognitive development and help assess the risk for poor neurobehavioural outcomes

    Identification of a Locus on the X Chromosome Linked to Familial Membranous Nephropathy

    Get PDF
    INTRODUCTION: Membranous nephropathy (MN) is the most common cause of nephrotic syndrome (NS) in adults and is a leading cause of end-stage renal disease due to glomerulonephritis. Primary MN has a strong male predominance, accounting for approximately 65% of cases; yet, currently associated genetic loci are all located on autosomes. Previous reports of familial MN have suggested the existence of a potential X-linked susceptibility locus. Identification of such risk locus may provide clues to the etiology of MN. METHODS: We identified 3 families with 8 members affected by primary MN. Genotyping was performed using single-nucleotide polymorphism microarrays, and serum was sent for anti-phospholipase A2 receptor (PLA2R) antibody testing. All affected members were male and connected through the maternal line, consistent with X-linked inheritance. Genome-wide multipoint parametric linkage analysis using a model of X-linked recessive inheritance was conducted, and genetic risk scores (GRSs) based on known MN-associated variants were determined. RESULTS: Anti-PLA2R testing was negative in all affected family members. Linkage analysis revealed a significant logarithm of the odds score (3.260) on the short arm of the X chromosome at a locus of approximately 11 megabases (Mb). Haplotype reconstruction further uncovered a shared haplotype spanning 2 Mb present in all affected individuals from the 3 families. GRSs in familial MN were significantly lower than in anti-PLA2R–associated MN and were not different from controls. CONCLUSIONS: Our study identifies linkage of familial membranous nephropathy to chromosome Xp11.3-11.22. Family members affected with MN have a significantly lower GRS than individuals with anti-PLA2R–associated MN, suggesting that X-linked familial MN represents a separate etiologic entity

    Connectivity of the Primate Superior Colliculus Mapped by Concurrent Microstimulation and Event-Related fMRI

    Get PDF
    Background: Neuroanatomical studies investigating the connectivity of brain areas have heretofore employed procedures in which chemical or viral tracers are injected into an area of interest, and connected areas are subsequently identified using histological techniques. Such experiments require the sacrifice of the animals and do not allow for subsequent electrophysiological studies in the same subjects, rendering a direct investigation of the functional properties of anatomically identified areas impossible. Methodology/Principal Findings: Here, we used a combination of microstimulation and fMRI in an anesthetized monkey preparation to study the connectivity of the superior colliculus (SC). Microstimulation of the SC resulted in changes in the blood oxygenation level-dependent (BOLD) signals in the SC and in several cortical and subcortical areas consistent with the known connectivity of the SC in primates. Conclusions/Significance: These findings demonstrates that the concurrent use of microstimulation and fMRI can be used to identify brain networks for further electrophysiological or fMRI investigation

    Atypical disengagement from faces and its modulation by the control of eye fixation in children with Autism Spectrum Disorder

    Get PDF
    By using the gap overlap task, we investigated disengagement from faces and objects in children (9–17 years old) with and without autism spectrum disorder (ASD) and its neurophysiological correlates. In typically developing (TD) children, faces elicited larger gap effect, an index of attentional engagement, and larger saccade-related event-related potentials (ERPs), compared to objects. In children with ASD, by contrast, neither gap effect nor ERPs differ between faces and objects. Follow-up experiments demonstrated that instructed fixation on the eyes induces larger gap effect for faces in children with ASD, whereas instructed fixation on the mouth can disrupt larger gap effect in TD children. These results suggest a critical role of eye fixation on attentional engagement to faces in both groups
    corecore